Nonequilibrium thermodynamics of interfaces using classical density functional theory.

نویسندگان

  • Eivind Johannessen
  • Joachim Gross
  • Dick Bedeaux
چکیده

A vapor-liquid interface introduces resistivities for mass and heat transfer. These resistivities have recently been determined from molecular simulations, as well as theoretically using the van der Waals square gradient model. This model, however, does not allow for direct quantitative comparison to experiment or results from molecular simulations. The classical density functional theory is used here in order to determine the equilibrium profiles of vapor-liquid interfaces. Equilibrium profiles are sufficient in the framework of nonequilibrium thermodynamics for determining the interfacial resistivities. The interfacial resistivities for heat transfer, for mass transfer, and for the coupling of heat and mass transfer can all be related to only one local thermal resistivity. This is done with integral relations for the interfacial resistivities. All interfacial resistivities can be consistently described in their temperature behavior with good accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of thermodynamics and kinetics of reaction of the ozone with mercury, silver and gold

In this work, we report results of calculations based on the density functional theory of different species metal-ozone, containing mercury, silver and gold. The chosen species range from small molecules and large transition-metal containing ozone with mercury, silver and gold complexes. A comparative analysis of the description of the metal-oxygen bond obtained by different methodologies is pr...

متن کامل

Nonequilibrium thermodynamics of transport through moving interfaces with application to bubble growth and collapse.

We develop the general equation for the nonequilibrium reversible-irreversible coupling framework of thermodynamics to handle moving interfaces in the context of a gas that can be dissolved in a surrounding liquid. The key innovation is a "moving interface normal transfer" term required for consistency between the thermodynamic evolution equation and the chain rule of functional calculus. The f...

متن کامل

Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces.

The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted 'DBT', provides computationa...

متن کامل

Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory

The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...

متن کامل

Thermodynamics of CO2 reaction with methylamine in aqueous solution: A computational study

Separation and capture of carbon dioxide from the flue gas of power plants in order to reduceenvironmental damages has always been of interest to researchers. In this study, aqueous solution ofmethylamine was used as an absorbent for CO2 capture. In order to study this reaction, DensityFunctional Theory (DFT) was employed at the level of B3LYP/6-311++G(d,p) by using theconductor-like polarizabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 129 18  شماره 

صفحات  -

تاریخ انتشار 2008